Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

Proximal splitting methods for depth estimation.

Mireille EL GHECHE

Joint work with J.-C. $Pesquet^1$, J. $Farah^2$, $Caroline Chaux^1$ and Béatrice $Pesquet-Popescu^3$

¹Laboratoire d'Informatique Gaspard Monge - UMR CNRS 8049, Université Paris-Est, France.
²Departement of Telecommunications, Faculty of Engineering, Holy-Spirit University of Kaslik, Lebanon.
³Département Traitement du Signal et des Images, Telecom-ParisTech, France.
⁴Ecole doctorale science et technologie, Université Libanaise, Centre AZM, Tripoli, Lebanon.

"Journée des doctorants", 12 June 2012

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

Outline

- Stereoscopic basics
- Energy model
 - Problem statement
 - Set theoretic estimation
 - Convex constraints
 - Sub-gradient projection method
- Proximal method
 - Proximity operator
 - PPXA+ algorithm
- Results

• • • • • • • • • • • • • • • • • • •	Introduction	Energy model	Proximal method	Results	Extension	conclusion	
Mireille EL GHECHE- Proximal splitting methods for depth estimation. 3/29	●0000	0000	000	000000	0000	00000	
	Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

Disparity

Left image (I_L)

Right image (I_R)

 $u(x,y) = (x - x', y - y') \underset{y = y'}{\Longrightarrow} u(x,y) = (x - x')$

Introduction	Energy model	Proximal method	Results	Extension	conclusion		
0000	0000	000	000000	0000	00000		
Mireille EL GHECHE- Proximal splitting methods for depth estimation.							

Disparity

Left image (I_L)

Right image (I_R)

$$I_L(x,y) = I_R(x - u(x,y), y)$$

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

3D reconstruction

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

3D reconstruction

Objective

$$u(x,y) = x - x' = \frac{Bf}{Z}$$

Applications

- 3D television, 3D teleconferencing,
- Obstacle detection,
- Robotics, satellite, …

	menuoron
0000● 0000 000 000 000 000	0000
Mireille EL GHECHE- Proximal splitting methods for depth estimation.	7/29

Problem formulation

Objective

Find for each pixel in the left image I_L a corresponding pixel in the right image I_R .

State of the art

- Feature-matching [Medioni, Nevatia, 1985],
- Global method (dynamic programming [Veksler, 2002], variational approach [Deriche, Kornprobst, Aubert, 1995.]),
- ► Normalized cross correlation [Zabih, Woodfill, 1994] ...

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

Problem formulation

Objective

Find for each pixel in the left image I_L a corresponding pixel in the right image I_R .

State of the art

- Feature-matching [Medioni, Nevatia, 1985],
- Global method (dynamic programming [Veksler, 2002], variational approach [Deriche, Kornprobst, Aubert, 1995.]),
- ▶ Normalized cross correlation [Zabih, Woodfill, 1994] ...

Variational method

$$J(u) = \sum_{(x,y)\in D} \phi(I_L(x,y) - I_R(x - u(x,y),y))$$

 ϕ is assumed to belong to $\Gamma_0(\mathbb{R})$ which is the class of a proper lower-semi continuous convex function.

Introduction	Energy model	Proximal method	Results	Extension	conclusion		
00000	●000	000	000000	0000	00000		
Mireille EL GHECHE- Proximal splitting methods for depth estimation. 8/29							

Convex minimization

- J is nonconvex with respect to the displacement field u.
- Ist order Taylor expansion of the nonlinear term around an initial estimate u

 $I_{R}(x - u(x, y), y) = I_{R}(x - \bar{u}(x, y), y) - (u(x, y) - \bar{u}(x, y))I_{R}^{x}(x - \bar{u}(x, y), y)$

* where I_R^{\times} is the horizontal gradient of the disparity compensated right image.

Cost function

$$J(u) = \sum_{(x,y)\in\mathcal{D}} \phi(T(x,y) \ u(x,y) - r(x,y))$$
* $T(x,y) = I_R^x(x - \bar{u}(x,y),y)$
* $r(x,y) = I_R(x - \bar{u}(x,y),y) + \bar{u}(x,y) \ T(x,y) - I_L(x,y)$

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

Set theoretic estimation

- ► The minimization of functional *J* is an ill-posed problem.
- Additional **constraints** are required to regularize the solution.
- ► Formulate available constraints as closed convex sets in a Hilbert space *H*:

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

Set theoretic estimation

- ► The minimization of functional *J* is an ill-posed problem.
- Additional **constraints** are required to regularize the solution.
- ► Formulate available constraints as closed convex sets in a Hilbert space *H*:
- Admissibility problem

Obtain a **feasible** solution minimizing an **objective** function and satisfying all **constraints** arising from prior knowledge.

Formulation

Find
$$u \in S = \bigcap_{i=1}^{m} S_i$$
 such that $J(u) = \inf J(S)$.

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

Convex Constraints

Range Constraint

$$S_1 = \{ u \in \mathcal{H} \mid u_{\min} \leq u \leq u_{\max} \}.$$

Introduction	Energy model	Proximal method	Results	Extension	conclusion			
00000	0000	000	000000	0000	00000			
Mireille EL GHECH	Mireille EL GHECHE- Proximal splitting methods for depth estimation.							

Convex Constraints

Range Constraint

$$S_1 = \{ u \in \mathcal{H} \mid u_{\min} \leq u \leq u_{\max} \}.$$

Total variation Constraint

$$S_2 = \{ u \in \mathcal{H} \mid \mathrm{TV}(u) \leq \tau \}.$$

 $\tau > 0$

Introduction	Energy model	Proximal method	Results	Extension	conclusion			
00000	0000	000	000000	0000	00000			
Mireille EL GHECH	Mireille EL GHECHE- Proximal splitting methods for depth estimation.							

Convex Constraints

Range Constraint

$$S_1 = \{u \in \mathcal{H} \mid u_{\min} \leq u \leq u_{\max}\}.$$

Total variation Constraint

$$S_2 = \{ u \in \mathcal{H} \mid \mathrm{TV}(u) \leq \tau \}.$$

 $\tau > \mathbf{0}$

Wavelet Constraint

$$S_3 = \left\{ u \in \mathcal{H} \mid \sum_{j \ge 1, k \in \mathbb{Z}^2, o \in \{H, V\}} |c_{j,k,o}^{\mathcal{B}}| \le \kappa \right\}$$

 $\kappa>$ 0, o is the orientation parameter and $j\in\mathbb{N}$ the resolution level.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECH	E- Proximal splitting me	thods for depth estimation.			11/29

Previous work

Subgradient Projections

- ► Discard occlusion areas *O*.
- Quadratic criterion, Strictly convex:

[Miled, Pesquet, Parent, 2009]

$$J(u) = \sum_{(x,y)\in\mathcal{D}\setminus\mathcal{O}} [T(x,y)u(x,y) - r(x,y)]^2 + \alpha \sum_{(x,y)\in\mathcal{D}} [u(x,y) - \bar{u}(x,y)]^2$$

Originality

Relax the strict convexity and the quadratic form of the function ϕ .

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	●00	000000	0000	00000
Mireille EL GHECH	E- Proximal splitting me	ethods for depth estimation.			12/29

Proximity operator

Projection

The projection $P_C y$ of a point $y \in \mathbb{R}^N$ onto C is the solution to the problem:

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \iota_{C}(x) + \frac{1}{2} \left\| x - y \right\|^{2}$$

where $\iota_{C} \in \Gamma_{0}(\mathbb{R}^{N})$ is the indicator function of *C*.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	●OO	000000	0000	00000
Mireille EL GHECHE	- Proximal splitting m	ethods for depth estimation.			12/29

Proximity operator

Projection

The projection $P_C y$ of a point $y \in \mathbb{R}^N$ onto C is the solution to the problem:

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \quad \iota_{C}(x) + \frac{1}{2} \left\| x - y \right\|^{2}$$

where $\iota_C \in \Gamma_0(\mathbb{R}^N)$ is the indicator function of *C*.

$\operatorname{prox}_{f} y$

We replace the function ι_C by an arbitrary function $f \in \Gamma_0(\mathbb{R}^N)$. Then, the problem can be rewritten as

$$\underset{x \in \mathbb{R}^{N}}{\text{minimize}} \qquad f(x) + \frac{1}{2} \|x - y\|^{2}$$

This problem admits a unique solution which is the proximity operator $prox_f y$ of f at y.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECH	IE- Proximal splitting me	thods for depth estimation.			13/29

Proposed approach

Optimization problem

$$\min_{L_i u \in C_i, i \in \{1,...,m\}} J(u) = \min_{L_i u \in C_i, i \in \{1,...,m\}} \sum_{(x,y) \in \mathcal{D} \setminus \mathcal{O}} \phi(T(x,y) u(x,y) - r(x,y))$$

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECH	IE- Proximal splitting me	thods for depth estimation.			13/29

Proposed approach

Optimization problem

$$\min_{L_i u \in C_i, i \in \{1,...,m\}} J(u) = \min_{L_i u \in C_i, i \in \{1,...,m\}} \sum_{(x,y) \in \mathcal{D} \setminus \mathcal{O}} \phi(T(x,y) \ u(x,y) - r(x,y))$$

- ▶ Each (S_i) can be expressed as $L_i^{-1}(C_i)$ where C_i is a non-empty closed convex subset of \mathbb{R}^{N_i} and L_i is a matrix in $\mathbb{R}^{N_i \times K}$.
- ▶ Parallel proximal algorithm (e.g. PPXA+) allows us to minimize a convex criterion J on some closed convex constraint sets (C_i)_{1≤i≤m}.
- It consists of computing, in parallel, the projections onto the different convex sets (C_i)_{1<i<m} and the proximity operator of the criterion J.

Introduction	Energy model	Proximal method	Results	Extension	conclusion	
00000	0000	000	000000	0000	00000	
Mireille EL GHECHE- Proximal splitting methods for depth estimation.						

PPXA+ algorithm

 λ_n is a relaxation parameter.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	00000	0000	00000
Mireille EL GHECHE	E- Proximal splitting me	thods for depth estimation.			15/29

Left image

Ground truth

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	00000	0000	00000
Mireille EL GHECHE	E- Proximal splitting me	thods for depth estimation.			15/29

Left image

Ground truth

PSNR= 34.20 dB Block BDE

PSNR= 34.83 dB ℓ^2 -norm DDE subgradient projection

 $\begin{array}{l} \text{PSNR}{=} \ 35.23 \ \text{dB} \\ \\ \ell^1 \text{-norm DDE} \\ \\ \text{PPXA}{+} \ \text{algo} \end{array}$

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	00000	0000	00000
Mireille EL GHECHE-	Proximal splitting metho	ls for depth estimation.			16/29

Left image

Ground truth

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE-	Proximal splitting meth	ods for depth estimation.			16/29

Left image

Ground truth

PSNR= 30.10 dB Block BDE

 $\begin{array}{l} {\sf PSNR}{=} \ {\sf 37.08} \ {\sf dB} \\ \\ \ell^2{\text{-norm DDE}} \\ \\ {\sf subgradient projection} \end{array}$

 $\begin{array}{l} \text{PSNR}{=} \ 37.39 \ \text{dB} \\ \\ \ell^1 \text{-norm DDE} \\ \\ \text{PPXA}{+} \ \text{algo} \end{array}$

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHEC	HE- Proximal splitting me	thods for depth estimation.		17/29	
Perform	ances of the	proposed me	thod in s	tereo ima	re

coding

▶ Independent scheme: encoding separately the original images I_L and I_R by applying a 5/3 wavelet-like transform.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECH	HE- Proximal splitting me	thods for depth estimation.			17/29

- ▶ Independent scheme: encoding separately the original images I_L and I_R by applying a 5/3 wavelet-like transform.
- Joint coding scheme: applying the same transform to I_R and I_e , where:

$$I_e(x,y) = I_L(x,y) - I_R(x - \boldsymbol{u}, y)$$

* the resulting wavelet coefficients are encoded using JPEG2000 entropy codec.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECI	HE- Proximal splitting me	thods for depth estimation.			17/29

- ▶ Independent scheme: encoding separately the original images I_L and I_R by applying a 5/3 wavelet-like transform.
- Joint coding scheme: applying the same transform to I_R and I_e , where:

$$I_e(x,y) = I_L(x,y) - I_R(x-u,y)$$

- * the resulting wavelet coefficients are encoded using JPEG2000 entropy codec.
- The generated dense fields are encoded by applying a quadtree decomposition followed by an entropy coding with H264/AVC software.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE-	Proximal splitting method	s for depth estimation.			18/29

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE-	Proximal splitting method	ls for depth estimation.			19/29

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE-	Proximal splitting method	ls for depth estimation.			20/29

Noisy stereo pairs

Corridor-Salt and paper

Tsukuba-Poisson

 $C_1 + C_2$: SNR=17.76 dB, MAE=0.45 $\ell_2 - norm$ (subgradient projection)

 $C_1 + C_3$: SNR=15.68 dB, MAE= 0.5 PPXA+, $\ell_1 - norm$

 $C_1 + C_2$: SNR=18.86 dB, MAE=0.46 PPXA+, Kullback distance

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECH	E- Proximal splitting me	thods for depth estimation.			21/29

Left image (I_L)

Right image (I_R)

$$I_L(x,y) = I_R(x - u(x,y), y)$$

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECH	E- Proximal splitting me	thods for depth estimation.			22/29

Left image (I_L)

Right image (I_R)

$$\mathbf{v}(x,y)I_L(x,y)=I_R(x-u(x,y),y)$$

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE-	Proximal splitting m	ethods for depth estimation.			23/29

Cost function

$$J(u, v) = \sum_{(x,y)\in\mathcal{D}} \phi(T_1(x, y) \ u(x, y) + T_2(x, y) \ v(x, y) - r(x, y))$$

$$* T_1(x, y) = I_R^x(x - \bar{u}(x, y), y), \ T_2(x, y) = I_L(x, y),$$

$$* r(x, y) = I_R(x - \bar{u}(x, y), y) + \bar{u}(x, y) \ T_1(x, y)$$

Introduction	Energy model	Proximal method	Results	Extension	conclusion		
00000	0000	000	000000	0000	00000		
Mireille EL GHECHE- Proximal splitting methods for depth estimation.							

Cost function

$$J(u, v) = \sum_{(x,y)\in\mathcal{D}} \phi(T_1(x,y) \ u(x,y) + T_2(x,y) \ v(x,y) - r(x,y))$$

$$* \ T_1(x,y) = I_R^x(x - \bar{u}(x,y),y), \ T_2(x,y) = I_L(x,y),$$

$$* \ r(x,y) = I_R(x - \bar{u}(x,y),y) + \bar{u}(x,y) \ T_1(x,y)$$

$$w(x, y) = [u(x, y) \ v(x, y)]^{\top}, \ T(x, y) = [T_1(x, y) \ T_2(x, y)],$$
$$J(w) = \sum_{(x, y) \in \mathcal{D}} \phi(T(x, y) \ w(x, y) - r(x, y))$$

Introduction	Energy model	Proximal method	Results	Extension	conclusion		
00000	0000	000	000000	0000	00000		
Mireille EL GHECHE- Proximal splitting methods for depth estimation. 24/							

results

Left image

Right image

Disparity Ground truth

Illumination Ground truth

PSNR= 48.79 dB

PSNR= 79.06 dB Subgradient projection

 $\mathsf{PSNR}=55.83~\mathsf{dB}$

PPXA+ algo

PSNR= 87.26 dB

 $\mathsf{PPXA}+\mathsf{algo}$

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	●0000
Mireille EL GHECHE-	Proximal splitting method	s for depth estimation.			25/29

Conclusion and perspectives

- Proposition of an efficient proximal method dealing with dense disparity estimation problems.
 - Direct projections¹ and proximity operators
 - Various criteria
 - Robustness w.r.t. perturbations
 - Color images
 - Images under illumination variation

¹http://www.cs.ubc.ca/labs/scl/spgl1/download.html

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	●0000
Mireille EL GHECHE- Proximal splitting methods for depth estimation.					25/29

Conclusion and perspectives

- Proposition of an efficient proximal method dealing with dense disparity estimation problems.
 - Direct projections¹ and proximity operators
 - Various criteria
 - Robustness w.r.t. perturbations
 - Color images
 - Images under illumination variation
- Good results w.r.t. existing works

Perspectives:

- Incorporate additional convex constraints.
- ► Parallel implementation (GPU).

¹http://www.cs.ubc.ca/labs/scl/spgl1/download.html

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE- Proximal splitting methods for depth estimation.					26/29

Context: solving inverse problems

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE- Proximal splitting methods for depth estimation.					26/29

Context: solving inverse problems

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000		000000	0000	0●000
Mireille EL GHECHE	- Proximal splitting me	thods for depth estimation.			26/29

Context: solving inverse problems

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00●00
Mireille EL GHECHE- Proximal splitting methods for depth estimation.					27/29

Frame and convex optimization

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses used for denoising (H = Id).
- Redundant frame repres. used for denoising.
- ► Forward-backward when $H \neq Id$ [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&Bioucas-Dias 2003, Bect et al. 2004] \rightarrow thresholded Landweber to solve $||H \cdot -z||_2^2 + || \cdot ||_1$.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000		000000	0000	00●00
Mireille EL GHECHE- Proximal splitting methods for depth estimation.					27/29

Frame and convex optimization

- Quadratic regularization techniques (Wiener filtering).
- Multiresolution analyses used for denoising (H = Id).
- Redundant frame repres. used for denoising.
- ► Forward-backward when $H \neq \text{Id}$ [Combettes&Wajs 2005, Daubechies et al. 2004, Figueiredo&Bioucas-Dias 2003, Bect et al. 2004] \rightarrow thresholded Landweber to solve $||H \cdot -z||_2^2 + || \cdot ||_1$.
- Douglas-Rachford (DR) algorithm [Combettes&Pesquet 2007]
- ▶ PPXA [Combettes&Pesquet 2008, Pustelnik et al. 2011]
- ADMM (SDMM) [Afonso et al., Setzer et al., Attouch & Soueycatt, 2009]
- Primal-Dual Algo. [Chen&Teboulle 1994, Esser et al. 2010, Combettes et al. 2011, Chambolle & Pock 2011, Briceño-Arias&Combettes 2011]
- PPXA+: unifying framework for PPXA and ADMM [Pesquet & Pustelnik 2011]

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE- Proximal splitting methods for depth estimation.					

Publications

- Conf. M. El Gheche, C. Chaux, J.-C. Pesquet, J. Farah and B. Pesquet-Popescu, Disparity map estimation under convex constraints using proximal algorithms, in SIPS 2011, Beirut, Lebanon, 4-7 Oct. 2011.
- Conf. M. El gheche, J.-C. Pesquet, C. Chaux, J. Farah et B. Pesquet-Popescu, Méthodes proximales pour l'estimation du champ de disparité à partir d'une paire d'images stéréoscopiques en présence de variations d'illumination, GRETSI 2011, Bordeaux, France, 5-8 sept. 2011.
- Conf. M. El Gheche, J.-C. Pesquet, J. Farah, M. Kaaniche and B. Pesquet-Popescu, Proximal splitting methods for depth estimation, in ICASSP, Prague, Czech republic, 22-27 May 2011.
- Journal C. Chaux, M. El Gheche, J. Farah, J.-C. Pesquet, and B. Pesquet-Popescu, A parallel proximal splitting method for disparity estimation from multicomponent images under illumination variation, accepted for publication in JMIV, Springer Netherlands, 2012.

Introduction	Energy model	Proximal method	Results	Extension	conclusion
00000	0000	000	000000	0000	00000
Mireille EL GHECHE- Proximal splitting methods for depth estimation.					

Thank you !